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Abstract: The first-order differential equation of exponential relaxation can be generalized by using either
the fractional derivative in the Riemann–Liouville (R-L) sense and in the Caputo (C) sense, both of a single
order less than 1. The two forms turn out to be equivalent. When, however, we use fractional derivatives of
distributed order (between zero and 1), the equivalence is lost, in particular on the asymptotic behaviour of
the fundamental solution at small and large times. We give an outline of the theory providing the general
form of the solution in terms of an integral of Laplace type over a positive measure depending on the order-
distribution. We consider in some detail two cases of fractional relaxation of distribution order: the double-
order and the uniformly distributed order discussing the differences between the R-L and C approaches. For
all the cases considered we give plots of the solutions for moderate and large times.

Key words: Fractional relaxation, fractional calculus, Mittag–Leffler function, complete monotonicity, slowly vary-
ing functions

1. INTRODUCTION

The purpose of this paper is to study two types of fractional generalization of the classical
relaxation equation. One type uses the fractional derivative in the sense of Riemann and
Liouville, the other in the sense of Caputo. In its uses we distinguish between single and
distributed orders of fractional derivatives.

The plan of the paper is as follows. In Section 2, we recall the relevant properties of the
fractional relaxation equations of a single order � � �1 � �0� 1], in which the fractional
derivative is intended in the Riemann–Liouville (R-L) sense and in the Caputo (C) sense.
The two forms are shown to be equivalent and the common solutions corresponding to a

Journal of Vibration and Control, 13(9–10): 1249–1268, 2007 DOI: 10.1177/1077546307077468

��2007 SAGE Publications Los Angeles, London, New Delhi, Singapore

Figures 1–4 appear in color online: http://jvc.sagepub.com

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Middle East Technical Univ on September 28, 2007 http://jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com


1250 F. MAINARDI ET AL.

few orders are plotted. In Section 3 we consider two general cases of fractional relaxation
where in the R-L setting the order 1��, in the C-setting the order � is distributed according
to a non-negative weight function p���. For the fundamental solutions of these equations
we provide a general formula obtained by the Titchmarsh theorem on Laplace inversion.
By virtue of this, these solutions appear as real Laplace transforms of a positive spectral
function, and hence they are completely monotonic functions for t � 0 in analogy with the
fundamental solution of the fractional relaxation equation of single order. In Section 4 we
consider two typical cases of weight function: the case of two distinct orders 0 � �1 �
�2 � 1 and the case of uniform distribution of orders between zero and 1. For these cases,
by using Tauberian theory, we provide asymptotic expressions of the fundamental solution
near zero and near infinity, that show the different role played by the order-distribution in the
R-L and C approaches. Finally, concluding remarks are given in Section 5. For the reader’s
convenience we briefly recall in an Appendix the essentials of Fractional Calculus useful for
understanding the notions of fractional derivative in the R-L sense and in the C sense.

2. FRACTIONAL RELAXATION OF SINGLE ORDER

The classical phenomenon of relaxation in its simplest form is known to be governed by a
linear ordinary differential equation of order one, possibly non-homogeneous, that hereafter
we recall with the corresponding solution. Denoting by t � 0 the time variable, u � u�t� the
field variable, and by t D1 the first-order time derivative, the relaxation differential equation
(of homogeneous type) reads

t D1u�t� � ��u�t�� t � 0� (2.1)

where � is a positive constant denoting the inverse of some characteristic time. The solution
of (2.1), under the initial condition u�0�� � 1� is called the fundamental solution and reads

u�t� � e��t � t � 0� (2.2)

From the view-point of Fractional Calculus (for a short review, see the Appendix) there
appear in the literature two ways of generalizing the equation (2.1), one using the R-L, the
other using the C fractional derivative. Adopting the notation of the Appendix for the two
derivatives (see (A.5) and (A.6)), and denoting by �1 the common fractional order, the two
forms read, respectively, t � 0

t D1u�t� � �� t D1��u�t�� 0 � � � 1� (2.3)

and

t D�
� u�t� � ��u�t�� 0 � � � 1� (2.4)

where now the positive constant � has dimensions [t]�� . If we assume the same initial con-
dition, e.g. u�0�� � 1, it is not difficult to show the equivalence of the two forms by playing
with the operators of standard and fractional integration and differentiation.2
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By applying in equations (2.3) and (2.4) the technique of the Laplace transforms for
fractional derivatives of C and R-L type (see (A.13)-(A.15)), we get the same result for the
fundamental solution, namely

�u�s� � s��1

s� � �� (2.5)

that, with the Mittag–Leffler function3 E� , yields in the time domain

u�t� � E����t��� 0 � � � 1� (2.6)

We agree to refer to the equation (2.3) or (2.4) as the simple fractional relaxation equation
in the R-L or C sense, respectively.

In Figure 1 we show the solution (2.6) for a few values of the order � � �1, �1 �
1�4� 1�2� 3�4� 1, by assuming � � 1: in the top diagram for the time interval [0� 10] (linear
scales), and in the bottom diagram for the time interval [101� 107] (logarithmic scales). In the
lower diagram we have added in dotted lines the asymptotic values for t 	 
 in order to
better visualize the power-law decay expressed by t��1�	�1��1� for the cases 0 � �1 � 1,
whereas the case �1 � 1 is not visible in view of the faster exponential decay. In both
diagrams we have shown in a dashed line the singular solution for the limiting case �1 � 0,
stretching the definition of the Mittag–Leffler function to E0�z� � 1��1� z�, the geometric
series,

u�t� �
�

E0�0� � 1� t � 0�

E0��t0� � E0��1� � 1�2� t 
 0�
(2.7)

3. FRACTIONAL RELAXATION OF DISTRIBUTED ORDER

3.1. The two forms of fractional relaxation

The simple fractional relaxation equations (2.3) and (2.4) can be generalized by using the
notion fractional derivative of distributed order.4 We thus consider the so-called distributed
order fractional relaxation equation or fractional relaxation equation of distributed order, in
the two alternative forms involving the R-L and the C derivatives, that we write respectively
as

t D1u�t� � ��
� 1

0
p���t D1��u�t�d�� (3.1)

and � 1

0
p���t D�

� u��t�d� � ��u��t�� (3.2)
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Figure 1. Fundamental solutions of the fractional relaxation of a single order �1 � 1�4� 1�2� 3�4� 1. Top:
linear scales� Bottom: logarithmic scales.
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subjected to the initial condition u�0�� � u��0�� � 1, where

p��� � 0� and
� 1

0
p���d� � c 
 0� (3.3)

The positive constant c can be taken as 1 if we want the integral to be normalized. For
the weight function p��� we conveniently require that its primitive P��� � � �

0 p�� ��d� �

vanishes at � � 0 and is there continuous from the right, attains the value c at � � 1 and has
at most finitely many (upwards) jump points in the half-open interval 0 � � � 1, these jump
points allowing delta contributions to p��� (particularly relevant for discrete distributions of
orders).

Since for distributed order the solution depends on the selected approach (as we shall
show hereafter), we now distinguish the fractional equations (3.1) and (3.2) and their funda-
mental solutions by decorating in the Caputo case the variable u�t� with subscript �.

As in Gorenflo and Mainardi (2006), the present analysis is based on the application of
the Laplace transformation with particular attention to some special cases. Here, for these
cases, we shall provide plots of the corresponding solutions.

3.2. The Integral Formula for the Fundamental Solutions

Let us now apply the Laplace transform to equations (3.1) and (3.2) by using the rules (A.15)
and (A.13) appropriate to the R-L and C derivatives, respectively. Introducing the relevant
functions

A�s� � s
� 1

0
p���s��d�� (3.4)

and

B�s� �
� 1

0
p���s�d�� (3.5)

we then get for the R-L and C cases, after simple manipulation, the Laplace transforms of
the corresponding fundamental solutions:

�u�s� � 1

s � �A�s�
� (3.6)

and

�u��s� � B�s��s

�� B�s�
� (3.7)

We note that in the particular case p��� � ��� � �1� we have in (3.4): A�s� � s1��1 , and
in (3.5): B�s� � s�1 . Then, equations (3.6) and (3.7) provide the same result (2.5) as simple
fractional relaxation.
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By inverting the Laplace transforms in (3.6) and (3.7) we obtain the fundamental solu-
tions for the R-L and C fractional relaxation of distributed order.

Let us start with the R-L derivatives. We get (by virtue of the Titchmarsh theorem on
Laplace inversion) the representation

u�t� � � 1

�

� 


0
e�rt Im

��u �rei�
��

dr� (3.8)

which requires the expression of �Im 1�[s � �A�s�]� along the ray s � rei� with r 
 0
(the branch cut of the function s��). We write

A
�
rei�

� �  cos��� �� i sin��� �� (3.9)

where 	
�
�
 � �r� � A�rei��

 �
� � � �r� � 1

�
arg
�

A�rei��
�
�

(3.10)

Then, after simple calculations, we get

u�t� �
� 


0
e�rt H�r � ��dr� (3.11)

with

H�r � �� � 1

�

� sin��� �

r2 � 2�r cos��� �� �22
� 0� (3.12)

Similarly for the C derivatives we obtain

u��t� � � 1

�

� 


0
e�rt Im

��u� �rei�
��

dr� (3.13)

which requires the expression of �Im B�s��[s��� B�s��]� along the ray s � rei� with
r 
 0 (the branch cut of the function s�). We write

B
�
rei�

� � � cos��� ��� i� sin��� ��� (3.14)

where 	
�
�
� � ��r� �

B�rei��
 �

� � � � ��r� �
1

�
arg
�
B�rei��

�
�

(3.15)
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After simple calculations we get

u��t� �
� 


0
e�rt K �r � ��dr� (3.16)

with

K �r � �� � 1

�r

�� sin��� ��
�2 � 2�� cos��� ��� 2�

� 0� (3.17)

We note from (3.11) and (3.16) that, since H�r � �� and K �r � �� are non-negative functions
of r for any � � IR�, the fundamental solutions u�t� and u��t� keep the relevant property to
be completely monotone.

The integral expressions (3.11) and (3.16) provide a sort of spectral representation of
the fundamental solutions that will be used to numerically evaluate these solutions in some
examples considered as interesting cases.

Furthermore, it is quite instructive to compute for the fundamental solutions their as-
ymptotic expressions for t 	 0 and t 	
 because they provide analytical (even if approx-
imated) representations for sufficiently short and long time respectively, and useful checks
on the numerical evaluation in the above time ranges.

To derive these asymptotic representations we shall apply the Tauberian theory of Laplace
transforms. According to this theory the asymptotic behaviour of a function f �t� near t � 

and t � 0 is (formally) obtained from the asymptotic behaviour of its Laplace transform �f �s�
for s 	 0� and for s 	 �
, respectively. For this purpose we note the asymptotic repre-
sentations, from (3.6):

�u�s� �
	


�


�

1

�A�s�
� s 	 0�� being A�s��s 

 ��

1

s

�
1� � A�s�

s

�
� s 	�
� being A�s��s �� 1���

(3.18)

and from (3.7):

�u��s� �
	

�

�

1

�

B�s�

s
� s 	 0�� being B�s� �� ��

1

s

�
1� �

B�s�

�
� s 	�
� being B�s� 

 ��

(3.19)

4. EXAMPLES

Since finding explicit solution formulas is not possible for the relaxation equations (3.1) and
(3.2) we shall concentrate our interest on some typical choices for the weight function p���
in (3.3) that characterizes the order distribution. For these choices we present the numerical
evaluation of the Titchmarsh integral formula, see equations (3.8)–(3.12) for u�t� (the R-L
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case), and equations (3.13)–(3.17) for u��t� (the C case). The numerical results are checked
by verifying the matching with the asymptotic expressions for u�t� and u��t� as t 	 0 and
t 	 �
, obtained via the Tauberian theory for Laplace transforms, according to equations
(3.18) and (3.19).

4.1. Double-order Fractional Relaxation

We now consider the choice

p��� � p1��� � �1�� p2��� � �2�� 0 � �1 � �2 � 1� (4.1)

where the constants p1 and p2 are both positive, conveniently restricted to the normalization
condition p1 � p2 � 1. Then for the R-L case we have

A�s� � p1s1��1 � p2s1��2� (4.2)

so that, inserting (4.2) in (3.6),

�u�s� � 1

s[1� ��p1s��1 � p2s��2�]
� (4.3)

Similarly, for the C case we have

B�s� � p1s�1 � p2s�2� (4.4)

so that, inserting (4.3) in (3.7),

�u��s� � p1s�1 � p2s�2

s[�� p1s�1 � p2s�2 ]
� (4.5)

We leave as an exercise the derivation of the spectral functions H�r � �� and K �r � �� of the
corresponding fundamental solutions that are used for the numerical computation. The nu-
merical results are checked by their matching with the asymptotic expressions that we eval-
uate by invoking the Tauberian theory and using equations (3.18) and (3.19) jointly with
equations (4.2) and (4.3) respectively.

For the R-L-case we note that in (4.2) s1��1 is negligibly small in comparison with s1��2

for s 	 0� and, vice versa, s1��2 is negligibly small in comparison to s1��1 for s 	 �
.
Similarly for the C-case we note that in (4.3) s�2 is negligibly small in comparison to s�1 for
s 	 0� and, vice versa, s�1 is negligibly small in comparison s�2 for s 	�
.

As a consequence of these considerations we get for the R-L case, if �2 � 1,

�u�s� �
	

�

�

1

�p2
s�2�1� s 	 0��

1

s
�1� �p1s��1�� s 	�
�

(4.6)
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so that

u�t� �

	


�


�
1

�p2

t��2

	�1� �2�
� t 	�
�

1� �p1
t�1

	�1� �1�
� t 	 0��

(4.7)

We note that the equation (4.5a) and henceforth equation (4.6a) lose their meaning for
�2 � 1. In this case we need a more careful reasoning: we consider the expression for s 	 0
provided by (3.18) as it stands, that is

�u�s� � 1

�[p1s1��1 � p2]
� 1

�p1

1

s1��1 � p2���p1�
� (4.8)

By virtue of the Laplace transform pair

t��1 E��� ��qt��� s���

s� � q
� (4.9)

see equation (1.80) in Podlubny (1999), where E��� denotes the Mittag–Leffler function in
two parameters5 we get, with q � p2���p1� and � � � � 1� �1, as t 	�
 :

u�t� � 1

�p1
t��1 E1��1�1��1

��qt1��1
� � � 1

�p1

d

dt
E1��1

��qt1��1
�
� (4.10)

Taking into account the asymptotic behaviour of the Mittag-Leffler function, we finally get

u�t� � � p1

p2

1� �1

	��1�
t��2��1� as t 	�
� (4.11)

Similarly for the C case we get:

�u��s� �
	

�

�

p1

�
s�1�1� s 	 0��

1

s

�
1� �

p2
s��2

�
� s 	�
�

(4.12)

so that

u��t� �

	


�


�
p1

�

t��1

	�1� �1�
� t 	�
�

1� �

p2

t�2

	�1� �2�
� t 	 0��

(4.13)

We exhibit in Figures 2 and 3 plots of the fundamental solutions for R-L and C fractional
relaxation, respectively, for some �1� �2� combinations: 1�8� 1�4�� 1�4� 1�2�� 1�2� 3�4��
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Figure 2. Fundamental solutions of the R-L fractional relaxation of double order in some �1� �2�
combinations: 1�8� 1�4�� 1�4� 1�2�� 1�2� 3�4�� 3�4� 1�. Top: linear scales� Bottom: logarithmic scales.
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Figure 3. Fundamental solutions of the C-fractional relaxation of double order in some �1� �2�
combinations: 1�8� 1�4�� 1�4� 1�2�� 1�2� 3�4�� 3�4� 1�. Top: linear scales� Bottom: logarithmic scales.
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3�4� 1�. We have chosen p1 � p2 � 1�2 and, as usual � � 1. From the plots the reader is
expected to verify the role played by the different orders for small and large times according
to the corresponding asymptotic expressions� see equations (4.6), (4.9), (4.10) and (4.12).

4.2. Uniformly Distributed Order Fractional Relaxation

We now consider the choice

p��� � 1� 0 � � � 1� (4.14)

For the R-L case we have

A�s� � s
� 1

0
s��d� � s � 1

log s
� (4.15)

hence, inserting (4.14) in (3.6)

�u�s� � log s

s log s � ��s � 1�
� (4.16)

For the C case we have

B�s� �
� 1

0
s�d� � s � 1

log s
� (4.17)

hence, inserting (4.16) in (3.7),

�u��s� � 1

s

s � 1

� log s � s � 1
� 1

s
� 1

s

� log s

� log s � s � 1
� (4.18)

We note that for this special order distribution we have A�s� � B�s� but the corresponding
fundamental solutions are quite different, as we see from their Laplace transforms (4.15) and
(4.17).

Then, invoking the Tauberian theory for regularly varying functions (power functions
multiplied by slowly varying functions6), a topic adequately treated in the treatise on Proba-
bility by Feller (1971, Chapter XIII.5), we have the following asymptotic expressions for the
R-L and C cases.

For the R-L case we get

�u�s� �
	


�


�

log s

��s � 1�
� s 	 0��

1

s

�
1� � s � 1

s log s

�
� s 	�
�

(4.19)

so
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u�t� �

	

�

�
1

�
et�1�t� � 1

�t
� t 	�
�

1� �

� log�1�t�� � t 	 0��
(4.20)

In (4.19) �1�t� :� �

t

e�u

u du denotes the exponential integral� see Abramowitz and Stegun
(1965, Ch. 5 and the Laplace transform pair (29.3.100)).

For the C case we get

�u��s� �
	

�

�

1

�s log�1�s�
� s 	 0��

1

s
� � log s

s2
� s 	�
�

(4.21)

so

u��t� �

	
�
�
1

� log t
� t 	�
�

1� �t log�1�t�� t 	 0��
(4.22)

In Figure 4 we display plots of the fundamental solutions for R-L and C uniformly distributed
fractional relaxation, adopting as previously, in the top �gure, linear scales (0 � t � 10),
and in the lower �gure, logarithmic scales (101 � t � 107).

For comparison in the top diagram the plots for single orders �1 � 0� 1�2� 1 are shown.
We note that for 1 � t � 10 the R-L and C plots are close to that for �1 � 1�2 from above
and from below, respectively.

In the bottom figure (where the plot for �1 is not visible because of its faster exponential
decay) we have added in dotted lines the asymptotic solutions for large times. We recognize
that the C plot is decaying much more slowly than any power law whereas the R-L plot is
decaying as t�1� this means that for large times these plots are the border lines for all plots
corresponding to single order relaxation with �1 � �0� 1�.

5. CONCLUSIONS

We have investigated the relaxation equation with (discretely or continuously) distributed
order of fractional derivatives both in the Riemann–Liouville and in the Caputo sense. Such
equations can be seen as simple models of more general distributed order fractional evolu-
tion in a Banach space where the relaxation parameter � is replaced by an operator A acting
in this space. A relevant example is time-fractional diffusion where in the linear case the
individual modes exhibit fractional relaxation. Our interest is focused on structural proper-
ties of the solutions, in particular on asymptotic behaviour at small and large times. In both
approaches we find that the smallest order of occurring fractional differentiation determines
the behaviour near infinity, but the largest order the behaviour near zero, in analogy to the
special form of time-fractional diffusion explicitly governed by the distributed order deriv-
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Figure 4. Fundamental solutions for R-L and C uniformly distributed fractional relaxation in comparison
with some solutions for single orders. Top: linear scales� Bottom: logarithmic scales.
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ative as in Chechkin et al. (2002a, 2002b) and in Langlands (2006), Mainardi et al. (2007)
and Sokolov et al. (2004). We see that the two parameters �1 and �2 play opposite roles in
our two cases (R-L) and (C). The topic deserves further study in several directions, e.g. in
terms of integral transforms and special functions like those of Mittag–Leffler type.
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APPENDIX: ESSENTIALS OF FRACTIONAL CALCULUS

For a sufficiently well-behaved function f �t� (t � IR�) we may define the fractional deriva-
tive of order � (m � 1 � � � m� m � IN), see Gorenflo and Mainardi (1997) and Podlubny
(1999), in two different senses, that we refer here as to Riemann–Liouville (R-L) deriva-
tive and Caputo (C) derivative, respectively. Both derivatives are related to the so-called
Riemann–Liouville fractional integral of order � 
 0 defined as

t J � f �t� :� 1

	���

� t

0
�t � ����1 f �� �d�� � 
 0� (A.1)

We recall the convention t J 0 � I (Identity operator) and the semigroup property

t J � t J � � t J � t J � � t J ���� �� � � 0� (A.2)

Furthermore

t J �t� � 	�� � 1�

	�� � 1� �� t
���� � � 0� � 
 �1� t 
 0� (A.3)

The fractional derivative of order � 
 0 in the Riemann–Liouville sense is defined as the op-
erator t D� which is the left inverse of the Riemann–Liouville integral of order � (in analogy
with the ordinary derivative), that is

t D�
t J� � I� � 
 0� (A.4)

If m denotes the positive integer such that m � 1 � � � m� we recognize from equations
(A.2) and (A.4) t D� f �t� :� t Dm

t J m�� f �t� � hence

t D� f �t� �

	

�

�
dm

dtm

�
1

	 �m � ��
� t

0

f ���d�

�t � ����1�m

�
� m � 1 � � � m�

dm

dtm
f �t�� � � m�

(A.5)

For completion we define t D0 � I �
On the other hand, the fractional derivative of order � 
 0 in the Caputo sense is defined

as the operator t D�
� such that t D�

� f �t� :� t J m��
t Dm f �t� � hence
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t D�
� f �t� �

	

�

�
1

	 �m � ��
� t

0

f m�� �d�

�t � ����1�m
� m � 1 � � � m�

dm

dtm
f �t�� � � m�

(A.6)

Thus, when the order is not integer the two fractional derivatives differ in that the derivative
of order m does not generally commute with the fractional integral.

We point out that the Caputo fractional derivative satisfies the relevant property of being
zero when applied to a constant, and, in general, to any power function of non-negative
integer degree less than m � if its order � is such that m � 1 � � � m � Furthermore we note
that

t D� t� � 	�� � 1�

	�� � 1� �� t��� � � � 0 � � 
 �1 � t 
 0 � (A.7)

Gorenflo and Mainardi (1997) have shown the essential relationships between the two frac-
tional derivatives (when both of them exist),

t D�
� f �t� �

	


�


�
t D�

�
f �t���m�1

k�0 f �k��0��
t k

k!

�
�

t D� f �t���m�1
k�0

f �k��0��t k��

	�k � �� 1�
�

m � 1 � � � m� (A.8)

In particular, if m � 1 we have

t D�
� f �t� �

	
�
�
t D�[ f �t�� f �0��]�

t D� f �t�� f �0��t��

	�1� �� �
0 � � � 1� (A.9)

The Caputo fractional derivative, practically ignored in mathematical treatises, represents a
sort of regularization in the time origin for the Riemann–Liouville fractional derivative. We
note that for its existence all the limiting values f �k��0�� :� limt	0� f �t� are required to be
finite for k � 0� 1� 2� � � �m � 1.

We observe different behaviour of the two fractional derivatives at the end points of the
interval �m � 1�m� namely when the order is any positive integer: whereas t D� is, with
respect to its order � � an operator continuous at any positive integer, t D�

� is an operator
left-continuous since	
�
�

lim�	�m�1�� t D�
� f �t� � f �m�1��t�� f �m�1��0���

lim�	m� t D�
� f �t� � f �m��t��

(A.10)

We also note for m � 1 � � � m�
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t D� f �t� � t D�g�t��� f �t� � g�t��
m�

j�1

c j t
�� j � (A.11)

t D�
� f �t� � t D�

� g�t��� f �t� � g�t��
m�

j�1

c j t
m� j � (A.12)

In these formulae the coefficients c j are arbitrary constants. Last but not least, we point
out the major utility of the Caputo fractional derivative in treating initial-value problems
for physical and engineering applications where initial conditions are usually expressed in
terms of integer-order derivatives. This can be easily seen using the Laplace transformation,
according to which

��t D�
� f �t�� s

� � s� �f �s�� m�1�
k�0

s��1�k f �k��0��� m � 1 � � � m � (A.13)

where �f �s� � �  f �t�� s� � �

0 e�st f �t� dt � s � C, and f �k��0�� :� limt	0� f �t�. The

corresponding rule for the Riemann–Liouville derivative is more cumbersome: for m � 1 �
� � m it reads

� t D� f �t�� s� � s� �f �s�� m�1�
k�0

�
t Dk

t J �m���
�

f �0��sm�1�k� (A.14)

where, in analogy with (A.13), the limit for t 	 0� is understood to be taken after the
operations of fractional integration and derivation. As soon as all the limiting values f �k��0��
are finite and m � 1 � � � m, the formula (A.14) simplifies into

� t D� f �t�� s� � s� �f �s�� (A.15)

In the special case f �k��0�� � 0 for k � 0� 1�m�1, we recover the identity between the two
fractional derivatives, consistently with equation (A.8).

For more details on the theory and applications of fractional calculus we recommend
consulting, in addition to the well-known books by Samko et al. (1993), by Miller and Ross
(1993), and by Podlubny (1999), those that have appeared in recent years by Kilbas et al.
(2006), by West et al. (2003), and by Zaslavsky (2005).

NOTES

1. Corresponding author, E-mail: francesco.mainardi@unibo.it
2. Both equations (2.3) and (2.4) are equivalent to the Volterra integral equation (of fractional type)

u�t� � u�0��� �t J �u�t��
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For example, we derive the R-L equation (2.3) from the fractional integral equation simply differentiating
both sides of the latter, whereas we derive the fractional integral equation from the C equation (2.4)
by fractional integration of order �. In fact, in view of the semigroup property (A.2) of the fractional
integral, we note that

t J � t D�
� u�t�� t J � t J 1��

t D1u�t�� t J 1
t D1u�t��u�t�� u�0���

In the limit � � 1 we recover the relaxation equation (2.1) with the solution (2.2). The reader interested
in having more details on the two forms of fractional relaxation may consult, for the R-L approach,
Hilfer (2000) and Nonnenmacher and Metzler (1995), and for the C approach, Caputo and Mainardi
(1971), Gorenflo and Mainardi (1997) and Mainardi (1996).

3. Let us recall that the Mittag–Leffler function E��z� (� 
 0) is an entire transcendental function of order
1�� , defined in the complex plane by the power series

E��z� :�

�

k�0

zk

	��k � 1�
� � 
 0� z � C�

For details on it we refer the reader to Erdelyi et al. (1955), Kilbas et al. (2006), Gorenflo and Mainardi
(1997), Podlubny (1999) and Samko et al. (1993). We remark that for t � 0 the function E����t��
preserves the complete monotonicity of the exponential exp���t�: indeed it is represented in terms of a
real Laplace transform of a non-negative function,

E����t�� � 1

�

� 


0

e�rt

r

�r� sin����

�2 � 2�r� cos����� r2�
dr� t � 0� 0 � � � 1�

However it decreases at t 	 
 like a power with exponent ��: E����t�� � t���[�	�1� ��]. If

� � 1�2 we have for t � 0: E1�2����t� � e�
2t erfc��

�
t� � 1���

�
� t� as t 	
, where erfc denotes

the complementary error function� see Abramowitz and Stegun (1965).
4. We find a former idea of fractional derivative of distributed order in time in the 1969 book by Caputo,

which was later developed by Caputo himself (Caputo, 1995� 2001) and by Bagley and Torvik (2000). A
basic framework for the numerical solution of distributed-order differential equations has been recently
introduced by Diethelm and Ford (2001) and Diethelm and Luchko (2004) and by Lorenzo and Hartley
(2002) and Hartley and Lorenzo (2003).

5. The Mittag–Leffler function E����z� (��� 
 0, � � C) is defined by the power series

E����z� :�

�

k�0

zk

	��k � �� � z � C�

It generalizes the classical Mittag–Leffler function to which it reduces for � � 1. It is an entire tran-
scendental function of order 1���� on which the reader can gain more information by again consulting
Erdelyi et al. (1955), Kilbas et al. (2006), Gorenflo and Mainardi (1997), Podlubny (1999) and Samko
et al. (1993). With �� � � IR the function E�����x� (x � 0) becomes a completely monotonic function
of x if 0 � � � 1 and � � �� see Miller and Samko (2001). This property is still valid when x � qt�

(q 
 0). In particular, for 0 � � � � � 1 we note

qt��1���E��� ��qt�� � � d

dt
E� ��qt�� � �

q	�1� �� t����1�� t 	�
�

6. Definition: We call a (measurable) positive function a�y�, defined in a right neighbourhood of zero,
slowly varying at zero if a�cy��a�y�	 1 with y 	 0 for every c 
 0. We call a (measurable) positive
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function b�y�, defined in a neighbourhood of infinity, slowly varying at infinity if b�cy��b�y�	 1 with
y 	
 for every c 
 0. Examples: �log y�� with � � IR.

REFERENCES

Abramowitz, M. and Stegun, I. A., 1965, Handbook of Mathematical Functions, Dover, New York.
Bagley, R. L. and Torvik, P. J., 2000, “On the existence of the order domain and the solution of distributed order

equations, Part I, Part II,” International Journal of Applied Mathematics 2, 865–882, 965–987.
Caputo, M., 1969, Elasticità e Dissipazione, Zanichelli, Bologna (in Italian).
Caputo, M„ 1995, “Mean fractional-order derivatives differential equations and filters,” Annali della Università di

Ferrara (Sez VII, Science of Materials) 41, 73–84.
Caputo, M., 2001, “Distributed order differential equations modelling dielectric induction and diffusion,” Fractional

Calculus and Applied Analysis 4(4), 421–442.
Caputo, M. and Mainardi, F., 1971, “Linear models of dissipation in anelastic solids,” Rivista del Nuovo Cimento

(Ser. II) 1, 161–198.
Chechkin, A. V., Gorenflo, R., and Sokolov, I. M., 2002a, “Retarding subdiffusion and accelerating superdiffusion

governed by distributed-order fractional diffusion equations,” Physical Review E 66, 046129/1-6.
Chechkin, A. V., Gorenflo, R., Sokolov, I. M. and Gonchar, V. Yu., 2002b, “Distributed order time fractional diffu-

sion equation”, Fractional Calculus and Applied Analysis 6, 259–279.
Diethelm, K. and Ford, N. J., 2001, “Numerical solution methods for distributed order differential equations,”

Fractional Calculus and Applied Analysis 4, 531–542.
Diethelm K. and Luchko, Yu., 2004, “Numerical solution of linear multi-term initial value problems of fractional

order,” Computational Methods of Numerical Analysis 6, 243–263.
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., 1955, Higher Transcendental Functions, Vol. 3,

McGraw-Hill, New York.
Feller, W., 1971, An Introduction to Probability Theory and its Applications, Vol. 2, 2nd ed, Wiley, New York.
Gorenflo, R. and Mainardi, F., 1997, “Fractional calculus: integral and differential equations of fractional order,”

in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, eds, Springer
Verlag, Wien, pp. 223–276. [Reprinted in http://www.fracalmo.org]

Gorenflo, R. and Mainardi, F., 2006, “Fractional relaxation of distributed order,” Complexus Mundi: Emergent Pat-
terns in Nature, M. Novak, ed., World Scientific, Singapore, 33–42.

Hartley, T. T. and Lorenzo, C. F., 2003, “Fractional-order system identification based on continuous order-distribu-
tions,” Signal Processing 83, 2287–2300.

Hilfer, R., 2000, “Fractional time evolution”, in Applications of Fractional Calculus in Physics, R. Hilfer, ed., World
Scientific, Singapore, 87–130.

Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J., 2006, Theory and Applications of Fractional Differential Equa-
tions, North-Holland, Amsterdam.

Langlands, T. A. M., 2006, “Solution of a modified fractional diffusion equation,” Physica A 367, 136–144.
Lorenzo, C. F. and Hartley, T. T., 2002, “Variable order and distributed order fractional operators,” Nonlinear Dy-

namics 29, 57–98.
Mainardi, F., 1996, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solitons

and Fractals 7, 1461–1477.
Mainardi, F., Mura, A., Pagnini, G., and Gorenflo, R., 2007, “Sub-diffusion equations of fractional order and their

fundamental solutions”, in Mathematical Methods in Engineering, K.Tas and D. Baleanu, eds, Springer
Verlag, Dordrecht.

Miller, K. S. and Ross, B., 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations,
Wiley, New York.

Miller, K. S. and Samko, S. G., 2001, “Completely monotonic functions,” Integral Transforms and Special Functions
12(4), 389–402.

Nonnenmacher, T. F. and Metzler, R., 1995, “On the Riemann-Liouville fractional calculus and some recent appli-
cations,” Fractals 3, 557–566.

Podlubny, I., 1999, Fractional Differential Equations, Academic Press, San Diego.

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Middle East Technical Univ on September 28, 2007 http://jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com


1268 F. MAINARDI ET AL.

Samko, S. G., Kilbas, A. A., and Marichev, O. I., 1993, Fractional Integrals and Derivatives: Theory and Applica-
tions, Gordon and Breach, New York.

Sokolov, I. M., Chechkin, A. V., and Klafter, J., 2004, “Distributed-order fractional kinetics,” Acta Physica Polonica
35, 1323–1341.

West, B. J., Bologna, M., and Grigolini, P., 2003, Physics of Fractal Operators, Springer Verlag, New York.
Zaslavsky, G. M., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Middle East Technical Univ on September 28, 2007 http://jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com



